دانستنی ها
وبلاگی برای تمامی سنین
درباره وبلاگ


با سلام خدمت عزیزانی که این وبلاگ را مورد بازدید قرار دادند. لازم به ذکر است که تمامی مطالب این وبلاگ متعلق به تیم دانستنیها است و استفاده از آن به شرط ذکر منبع مانعی ندارد. با تشکر!!!
مدیر وبلاگ:
احسان آخرت دوست

مدیر وبلاگ : آتنا آخرت دوست
نظرسنجی
بزرگترین دانشمند ایرانی از نظر شما؟










سه شنبه 21 خرداد 1392 :: نویسنده : امیرحسین ناطقی
عدد پی (π) از عددهای ثابت ریاضی و تقریباً برابر با ۳٫۱۴۱۵۹ است. این عدد را با علامت \pi نشان می‌دهند. عدد پی عددی حقیقی و گُنگاست که نسبت محیط دایره به قطر آن را در هندسهٔ اقلیدسی مشخص می‌کند و کاربردهای فراوانی در ریاضیات، فیزیک و مهندسی دارد. عدد پی همچنین به ثابت ارشمیدس نیز معروف است. 
ادامه ی مطلب رو حتما ببینید!!!!!!!!

عدد پی عدد گنگی است که در بسیاری از محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات می‌باشد. آن را با \piنمایش می‌دهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره‌ای به شعاع واحد تعریف می‌کنند. در ریاضیات مدرن این عدد را در آنالیز ریاضی و با استفاده از توابع مثلثاتی، به صورت دقیق ریاضی تعریف می‌کنند. به عنوان نمونه عدد پی را دو برابر کوچکترین مقدار مثبت x، که به ازای آن cos(x)=0 می‌شود تعریف می‌کنند.


تقریب اعشاری عدد پی

Cir.jpg

اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد. این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم محیطی و یک شش ضلعی منظم محاطی استوار است.

ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیک‌تر شدند. از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد: \frac11 - \frac13 + \frac15 - \frac17 + \frac19 - \ldots = \frac{\pi}{4}

یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا ۶ رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.

طبق محاسبهٔ کامپیوتری سری فوق، تعداد سری و اعشار محاسبه شده مطابق زیر است:

  • ۱۰۰ میلیون جمله: ۷ رقم اعشار
  • یک میلیارد جمله: ۸ رقم اعشار

ارقام بالا نشان می‌دهد که این الگوریتم رشد نمایی شدیدی دارد که زمان زیادی را می‌تواند برای محاسبهٔ ارقام بسیار بالا صرف نماید.

در سال ۱۷۶۱ لامبرت ریاضیدان سوئیسی ثابت کرد که عدد پی گنگ می‌باشد و نمی‌توان آنرا بصوت نسبت دو عدد صحیح نوشت. همچنین در سال ۱۸۸۲فردیناند فون لیندمان ثابت کرد که عدد پی یک عدد جبری نیست و نمی‌تواند ریشه یک معادله جبری باشد که ضرایب آن گویا هستند (همانند عدد e). این کشف بزرگ یعنی اینکه عدد پی یک عدد گنگ می‌باشد به سالها تلاش ریاضی‌دانان برای تربیع دایره پایان داد.

در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه‌های رایانه‌ای برای محاسبه عدد پی مورد استفاده قرار می‌گیرد. این فرمول به صورت زیر است:

\frac{\pi}{4} = 4 \arctan \frac15 - \arctan \frac1{239}

با استفاده از این فرمول یک انگلیسی به نام ویلیام شانکس مقدار عدد پی را تا ۷۰۷ رقم اعشار محاسبه کرد، در حالیکه فقط ۵۲۷ رقم آن درست بود.

باوجود آنکه همه ریاضی‌دانان می‌دانند که عدد پی گنگ می‌باشد و هرگز نمی‌توان آنرا بطور دقیق محاسبه کرد اما ارائه فرمول‌ها و مدل‌های محاسبه عدد پی هموار برای آنها از جذابیت زیادی برخوردار بوده‌است. بسیاری از آنها تمام عمر خود را صرف محاسبه ارقام این عدد زیبا نمودند اما آنها هرگز نتوانستند تا قبل از ساخت کامپیوتر این عدد را بیش از ۱۰۰۰ رقم اعشار محاسبه نمایند.

امروزه مقدار عدد پی با استفاده از پیشرفته‌ترین رایانه‌ها تا میلیونها رقم محاسبه شده‌است. و تعداد این ارقام هنوز در حال افزایش است. اولین محاسبه کامپیوتری در سال ۱۹۴۹ انجام گرفت و این عدد را تا ۲۰۰۰ رقم محاسبه نمود و در اوخر سال ۱۹۹۹ یکی از سوپر کامپیوترهای دانشگاه توکیو این عدد را تا ۲۰۶٬۱۵۸٬۴۳۰٬۰۰۰ رقم اعشار محاسبه نمود.

از سال ۱۹۸۸ روز ۱۴ مارس را در آمریکا روز عدد پی نام نهاده‌اند و جشن می‌گیرند. روزهای دیگری نیز برای عدد پی در دیگر کشورها تعیین شده و مراسمی برای معرفی عدد پی و اهمیت آن برگزار می‌شود.





نوع مطلب : ریاضی، 
برچسب ها : عدد پی، تاریخچه عدد پی، عدد پی چیست؟، تعریف عدد پی،
لینک های مرتبط :


آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :


.

 
 
 
شبکه اجتماعی فارسی کلوب | Buy Mobile Traffic | سایت سوالات